Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405734

RESUMO

Templated DNA repair that occurs during homologous recombination and replication stress relies on RAD51. RAD51 activity is positively regulated by BRCA2 and the RAD51 paralogs. The Shu complex is a RAD51 paralog-containing complex consisting of SWSAP1 and SWS1. We demonstrate that SWSAP1-SWS1 binds RAD51, maintains RAD51 filament stability, and enables strand exchange. Using single molecule confocal fluorescence microscopy combined with optical tweezers, we show that SWSAP1-SWS1 decorates RAD51 filaments proficient for homologous recombination. We also find SWSAP1-SWS1 enhances RPA diffusion on ssDNA. Importantly, we show human sgSWSAP1 and sgSWS1 knockout cells are sensitive to pharmacological inhibition of PARP and APE1. Lastly, we identify cancer variants in SWSAP1 that alter SWS1 complex formation. Together, we show that SWSAP1-SWS1 stimulates RAD51-dependent high-fidelity repair and may be an important new cancer therapeutic target.

2.
DNA Repair (Amst) ; 134: 103625, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237481

RESUMO

By observing one molecule at a time, single-molecule studies can offer detailed insights about biomolecular processes including on rates, off rates, and diffusivity of molecules on strands of DNA. A recent technological advance (Single-molecule Analysis of DNA-binding proteins from Nuclear Extracts, SMADNE) has lowered the barrier to entry for single-molecule studies, and single-molecule dynamics can now be determined directly out of nuclear extracts, providing information in an intermediate environment between purified proteins in isolation and the heterogeneity of a nucleus. To compare and contrast the single-molecule DNA binding dynamics in nuclear extracts versus purified proteins, combined optical tweezers and fluorescence microscopy experiments were performed with purified GFP-tagged 8-oxoguanine glycosylase 1 (OGG1), purified GFP-OGG1 spiked into nuclear extracts, and nuclear extracts from human cells overexpressing GFP-OGG1. We observed differences in undamaged DNA binding during DNA damage search in each of the three conditions. Purified GFP-OGG1 engaged undamaged DNA for a weighted average lifetime of 5.7 s and 21% of these events underwent DNA diffusion after binding. However, unlike other glycosylases studied by SMADNE, OGG1 does not bind non-damaged DNA efficiently in nuclear extracts. In contrast, GFP-OGG1 binding dynamics on DNA substrates containing oxidative damage were relatively similar in all three conditions, with the weighted average binding lifetimes varying from 2.2 s in nuclear extracts to 7.8 s with purified GFP-OGG1 in isolation. Finally, we compared the purified protein and nuclear extract approaches for a catalytically dead OGG1 variant (GFP-OGG1-K249Q). This variant greatly increased the binding lifetime for oxidative DNA damage, with the weighted average lifetime for GFP-OGG1-249Q in nuclear extracts at 15.4 s vs 10.7 s for the purified protein. SMADNE will provide a new window of observation into the behavior of nucleic acid binding proteins only accessible by biophysicists trained in protein purification and protein labeling.


Assuntos
DNA Glicosilases , Reparo do DNA , Guanina , Humanos , DNA , Dano ao DNA , DNA Glicosilases/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo
3.
Nucleic Acids Res ; 52(4): 1763-1778, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153143

RESUMO

BG4 is a single-chain variable fragment antibody shown to bind various G-quadruplex (GQ) topologies with high affinity and specificity, and to detect GQ in cells, including GQ structures formed within telomeric TTAGGG repeats. Here, we used ELISA and single-molecule pull-down (SiMPull) detection to test how various lengths and GQ destabilizing base modifications in telomeric DNA constructs alter BG4 binding. We observed high-affinity BG4 binding to telomeric GQ independent of telomere length, although three telomeric repeat constructs that cannot form stable intramolecular GQ showed reduced affinity. A single guanine substitution with 8-aza-7-deaza-G, T, A, or C reduced affinity to varying degrees depending on the location and base type, whereas two G substitutions in the telomeric construct dramatically reduced or abolished binding. Substitution with damaged bases 8-oxoguanine and O6-methylguanine failed to prevent BG4 binding although affinity was reduced depending on lesion location. SiMPull combined with FRET revealed that BG4 binding promotes folding of telomeric GQ harboring a G to T substitution or 8-oxoguanine. Atomic force microscopy revealed that BG4 binds telomeric GQ with a 1:1 stoichiometry. Collectively, our data suggest that BG4 can recognize partially folded telomeric GQ structures and promote telomeric GQ stability.


Assuntos
Quadruplex G , DNA/genética , DNA/química , Telômero/genética , Anticorpos/genética
4.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961208

RESUMO

By observing one molecule at a time, single-molecule studies can offer detailed insights about biomolecular processes including on rates, off rates, and diffusivity of molecules on strands of DNA. A recent technological advance (Single-molecule Analysis of DNA-binding proteins from Nuclear Extracts, SMADNE) has lowered the barrier to entry for single-molecule studies, and single-molecule dynamics can now be determined directly out of nuclear extracts, providing information in an intermediate environment between purified proteins in isolation and the heterogeneity of a nucleus. To compare and contrast the single-molecule DNA binding dynamics in nuclear extracts versus purified proteins, combined optical tweezers and fluorescence microscopy experiments were performed with purified GFP-tagged 8-oxoguanine glycosylase 1 (OGG1), purified GFP-OGG1 spiked into nuclear extracts, and nuclear extracts from human cells overexpressing GFP-OGG1. We observed differences in undamaged DNA binding during DNA damage search in each of the three conditions. Purified GFP-OGG1 engaged undamaged DNA for a weighted average lifetime of 5.7 s and 21% of these events underwent DNA diffusion after binding. However, unlike other glycosylases studied by SMADNE, OGG1 does not bind non-damaged DNA efficiently in nuclear extracts. In contrast, GFP-OGG1 binding dynamics on DNA substrates containing oxidative damage were relatively similar in all three conditions, with the weighted average binding lifetimes varying from 2.2 s in nuclear extracts to 7.8 s with purified GFP-OGG1 in isolation. Finally, we compared the purified protein and nuclear extract approaches for a catalytically dead OGG1 variant (GFP-OGG1-K249Q). This variant greatly increased the binding lifetime for oxidative DNA damage, with the weighted average lifetime for GFP-OGG1-249Q in nuclear extracts at 15.4 s vs 10.7 s for the purified protein. SMADNE will provide a new window of observation into the behavior of nucleic acid binding proteins only accessible by biophysicists trained in protein purification and protein labeling.

5.
bioRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37873231

RESUMO

DNA methylation plays a key role in epigenetics, with 60-80% of CpG sites containing 5-methylcytosine. Base excision repair (BER) is suggested to be the main pathway involved in active DNA demethylation. 5-formylctyosine (5fC), an oxidized moiety of methylated cytosine, is recognized and removed by thymine DNA glycosylase (TDG) to generate an abasic site. TDG binds avidly to abasic sites and is product inhibited. Using single molecule fluorescence experiments, we saw TDG interact with DNA containing 5fC specifically and non-specifically with lifetimes of 72.9 and 7.5 seconds, respectively. These results indicate that TDG cleaves the 5fC and stays bound for an extended time at the generated abasic site. Mean squared displacement analysis and a two color TDG experiment indicate that TDG exhibits multiple modes of linear diffusion, including hopping and sliding, in search of a lesion. The catalytically crippled variants, N140A and R275A/L, have a reduced binding lifetime compared to wild type and Mean Squared Displacement (MSD) analysis indicates that R275L/A moves on the DNA with a faster diffusivity. These results indicate that mutating R275, but not N140 interferes with damage recognition by TDG. Our findings give insight into how TDG searches for its lesions in long stretches of undamaged DNA.

6.
Proc Natl Acad Sci U S A ; 120(30): e2308010120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459531

RESUMO

Cellular eukaryotic replication initiation helicases are first loaded as head-to-head double hexamers on double-stranded (ds) DNA origins and then initiate S-phase DNA melting during licensed (once per cell cycle) replication. Merkel cell polyomavirus (MCV) large T (LT) helicase oncoprotein similarly binds and melts its own 98-bp origin but replicates multiple times in a single cell cycle. To examine the actions of this unlicensed viral helicase, we quantitated multimerization of MCV LT molecules as they assembled on MCV DNA origins using real-time single-molecule microscopy. MCV LT formed highly stable double hexamers having 17-fold longer mean lifetime (τ, >1,500 s) on DNA than single hexamers. Unexpectedly, partial MCV LT assembly without double-hexamer formation was sufficient to melt origin dsDNA as measured by RAD51, RPA70, or S1 nuclease cobinding. DNA melting also occurred with truncated MCV LT proteins lacking the helicase domain, but was lost from a protein without the multimerization domain that could bind only as a monomer to DNA. SV40 polyomavirus LT also multimerized to the MCV origin without forming a functional hexamer but still melted origin DNA. MCV origin melting did not require ATP hydrolysis and occurred for both MCV and SV40 LT proteins using the nonhydrolyzable ATP analog, adenylyl-imidodiphosphate (AMP-PNP). LT double hexamers formed in AMP-PNP, and melted DNA, consistent with direct LT hexamer assembly around single-stranded (ss) DNA without the energy-dependent dsDNA-to-ssDNA melting and remodeling steps used by cellular helicases. These results indicate that LT multimerization rather than helicase activity is required for origin DNA melting during unlicensed virus replication.


Assuntos
Antígenos Transformantes de Poliomavirus , Vírus 40 dos Símios , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/metabolismo , Desnaturação de Ácido Nucleico , Adenilil Imidodifosfato , Replicação do DNA , DNA/genética , DNA/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , DNA de Cadeia Simples , DNA Viral/genética , DNA Viral/metabolismo
7.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373320

RESUMO

Base excision repair (BER) is a cellular process that removes damaged bases arising from exogenous and endogenous sources including reactive oxygen species, alkylation agents, and ionizing radiation. BER is mediated by the actions of multiple proteins which work in a highly concerted manner to resolve DNA damage efficiently to prevent toxic repair intermediates. During the initiation of BER, the damaged base is removed by one of 11 mammalian DNA glycosylases, resulting in abasic sites. Many DNA glycosylases are product-inhibited by binding to the abasic site more avidly than the damaged base. Traditionally, apurinic/apyrimidinic endonuclease 1, APE1, was believed to help turn over the glycosylases to undergo multiple rounds of damaged base removal. However, in a series of papers from our laboratory, we have demonstrated that UV-damaged DNA binding protein (UV-DDB) stimulates the glycosylase activities of human 8-oxoguanine glycosylase (OGG1), MUTY DNA glycosylase (MUTYH), alkyladenine glycosylase/N-methylpurine DNA glycosylase (AAG/MPG), and single-strand selective monofunctional glycosylase (SMUG1), between three- and five-fold. Moreover, we have shown that UV-DDB can assist chromatin decompaction, facilitating access of OGG1 to 8-oxoguanine damage in telomeres. This review summarizes the biochemistry, single-molecule, and cell biology approaches that our group used to directly demonstrate the essential role of UV-DDB in BER.


Assuntos
Cromatina , DNA Glicosilases , Humanos , Cromatina/genética , Reparo do DNA , Dano ao DNA , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(11): e2217422120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36888663

RESUMO

Somatic mutations are highly enriched at transcription factor (TF) binding sites, with the strongest trend being observed for ultraviolet light (UV)-induced mutations in melanomas. One of the main mechanisms proposed for this hypermutation pattern is the inefficient repair of UV lesions within TF-binding sites, caused by competition between TFs bound to these lesions and the DNA repair proteins that must recognize the lesions to initiate repair. However, TF binding to UV-irradiated DNA is poorly characterized, and it is unclear whether TFs maintain specificity for their DNA sites after UV exposure. We developed UV-Bind, a high-throughput approach to investigate the impact of UV irradiation on protein-DNA binding specificity. We applied UV-Bind to ten TFs from eight structural families, and found that UV lesions significantly altered the DNA-binding preferences of all the TFs tested. The main effect was a decrease in binding specificity, but the precise effects and their magnitude differ across factors. Importantly, we found that despite the overall reduction in DNA-binding specificity in the presence of UV lesions, TFs can still compete with repair proteins for lesion recognition, in a manner consistent with their specificity for UV-irradiated DNA. In addition, for a subset of TFs, we identified a surprising but reproducible effect at certain nonconsensus DNA sequences, where UV irradiation leads to a high increase in the level of TF binding. These changes in DNA-binding specificity after UV irradiation, at both consensus and nonconsensus sites, have important implications for the regulatory and mutagenic roles of TFs in the cell.


Assuntos
Fatores de Transcrição , Raios Ultravioleta , Humanos , Fatores de Transcrição/metabolismo , Sítios de Ligação/genética , Ligação Proteica/genética , DNA/metabolismo
10.
Nucleic Acids Res ; 51(10): 4881-4898, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-36971122

RESUMO

UV-damaged DNA-binding protein (UV-DDB) is a heterodimeric protein, consisting of DDB1 and DDB2 subunits, that works to recognize DNA lesions induced by UV damage during global genome nucleotide excision repair (GG-NER). Our laboratory previously discovered a non-canonical role for UV-DDB in the processing of 8-oxoG, by stimulating 8-oxoG glycosylase, OGG1, activity 3-fold, MUTYH activity 4-5-fold, and APE1 (apurinic/apyrimidinic endonuclease 1) activity 8-fold. 5-hydroxymethyl-deoxyuridine (5-hmdU) is an important oxidation product of thymidine which is removed by single-strand selective monofunctional DNA glycosylase (SMUG1). Biochemical experiments with purified proteins indicated that UV-DDB stimulates the excision activity of SMUG1 on several substrates by 4-5-fold. Electrophoretic mobility shift assays indicated that UV-DDB displaced SMUG1 from abasic site products. Single-molecule analysis revealed that UV-DDB decreases the half-life of SMUG1 on DNA by ∼8-fold. Immunofluorescence experiments demonstrated that cellular treatment with 5-hmdU (5 µM for 15 min), which is incorporated into DNA during replication, produces discrete foci of DDB2-mCherry, which co-localize with SMUG1-GFP. Proximity ligation assays supported a transient interaction between SMUG1 and DDB2 in cells. Poly(ADP)-ribose accumulated after 5-hmdU treatment, which was abrogated with SMUG1 and DDB2 knockdown. These data support a novel role for UV-DDB in the processing of the oxidized base, 5-hmdU.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA , Proteínas de Ligação a DNA/metabolismo , Reparo do DNA , DNA/química , Timidina , Raios Ultravioleta
11.
Nucleic Acids Res ; 51(7): e39, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36861323

RESUMO

Single-molecule characterization of protein-DNA dynamics provides unprecedented mechanistic details about numerous nuclear processes. Here, we describe a new method that rapidly generates single-molecule information with fluorescently tagged proteins isolated from nuclear extracts of human cells. We demonstrated the wide applicability of this novel technique on undamaged DNA and three forms of DNA damage using seven native DNA repair proteins and two structural variants, including: poly(ADP-ribose) polymerase (PARP1), heterodimeric ultraviolet-damaged DNA-binding protein (UV-DDB), and 8-oxoguanine glycosylase 1 (OGG1). We found that PARP1 binding to DNA nicks is altered by tension, and that UV-DDB did not act as an obligate heterodimer of DDB1 and DDB2 on UV-irradiated DNA. UV-DDB bound to UV photoproducts with an average lifetime of 39 seconds (corrected for photobleaching, τc), whereas binding lifetimes to 8-oxoG adducts were < 1 second. Catalytically inactive OGG1 variant K249Q bound oxidative damage 23-fold longer than WT OGG1, at 47 and 2.0 s, respectively. By measuring three fluorescent colors simultaneously, we also characterized the assembly and disassembly kinetics of UV-DDB and OGG1 complexes on DNA. Hence, the SMADNE technique represents a novel, scalable, and universal method to obtain single-molecule mechanistic insights into key protein-DNA interactions in an environment containing physiologically-relevant nuclear proteins.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA , Humanos , Proteínas de Ligação a DNA/genética , Dano ao DNA , DNA/química , Poli(ADP-Ribose) Polimerases/metabolismo , Raios Ultravioleta
12.
DNA Repair (Amst) ; 122: 103447, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36608403
13.
Nat Commun ; 14(1): 276, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650165

RESUMO

Ultraviolet A light is commonly emitted by UV-nail polish dryers with recent reports suggesting that long-term use may increase the risk for developing skin cancer. However, no experimental evaluation has been conducted to reveal the effect of radiation emitted by UV-nail polish dryers on mammalian cells. Here, we show that irradiation by a UV-nail polish dryer causes high levels of reactive oxygen species, consistent with 8-oxo-7,8-dihydroguanine damage and mitochondrial dysfunction. Analysis of somatic mutations reveals a dose-dependent increase of C:G>A:T substitutions in irradiated samples with mutagenic patterns similar to mutational signatures previously attributed to reactive oxygen species. In summary, this study demonstrates that radiation emitted by UV-nail polish dryers can both damage DNA and permanently engrave mutations on the genomes of primary mouse embryonic fibroblasts, human foreskin fibroblasts, and human epidermal keratinocytes.


Assuntos
Dano ao DNA , Fibroblastos , Raios Ultravioleta , Animais , Humanos , Camundongos , Queratinócitos/efeitos da radiação , Mamíferos , Mutação/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos , Unhas
14.
Nucleic Acids Res ; 50(22): 12856-12871, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36511855

RESUMO

UV-DDB is a DNA damage recognition protein recently discovered to participate in the removal of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxoG) by stimulating multiple steps of base excision repair (BER). In this study, we examined whether UV-DDB has a wider role in BER besides oxidized bases and found it has specificity for two known DNA substrates of alkyladenine glycosylase (AAG)/N-methylpurine DNA glycosylase (MPG): 1, N6-ethenoadenine (ϵA) and hypoxanthine. Gel mobility shift assays show that UV-DDB recognizes these two lesions 4-5 times better than non-damaged DNA. Biochemical studies indicated that UV-DDB stimulated AAG activity on both substrates by 4- to 5-fold. Native gels indicated UV-DDB forms a transient complex with AAG to help facilitate release of AAG from the abasic site product. Single molecule experiments confirmed the interaction and showed that UV-DDB can act to displace AAG from abasic sites. Cells when treated with methyl methanesulfonate resulted in foci containing AAG and UV-DDB that developed over the course of several hours after treatment. While colocalization did not reach 100%, foci containing AAG and UV-DDB reached a maximum at three hours post treatment. Together these data indicate that UV-DDB plays an important role in facilitating the repair of AAG substrates.


Assuntos
DNA Glicosilases , DNA Glicosilases/metabolismo , Dano ao DNA , Reparo do DNA , DNA/genética , DNA/metabolismo
15.
Biomedicines ; 10(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36289721

RESUMO

Mitochondria are ATP-generating organelles in eukaryotic cells that produce reactive oxygen species (ROS) during oxidative phosphorylation (OXPHOS). Mitochondrial DNA (mtDNA) is packaged within nucleoids and, due to its close proximity to ROS production, endures oxidative base damage. This damage can be repaired by base excision repair (BER) within the mitochondria, or it can be degraded via exonucleases or mitophagy. Persistent mtDNA damage may drive the production of dysfunctional OXPHOS components that generate increased ROS, or OXPHOS components may be directly damaged by ROS, which then can cause more mtDNA damage and create a vicious cycle of ROS production and mitochondrial dysfunction. If mtDNA damage is left unrepaired, mtDNA mutations including deletions can result. The accumulation of mtDNA mutations has been associated with conditions ranging from the aging process to cancer and neurodegenerative conditions, but the sequence of events leading to mtDNA mutations and deletions is yet unknown. Researchers have utilized many systems and agents for generating ROS in mitochondria to observe the downstream effects on mtDNA, ROS, and mitochondrial function; yet, there are various drawbacks to these methodologies that limit their precision. Here, we describe a novel chemoptogenetic approach to target oxidative damage to mitochondria and mtDNA with a high spatial and temporal resolution so that the downstream effects of ROS-induced damage can be measured with a high precision in order to better understand the mechanism of mitochondrial dysfunction in aging, cancer, and neurodegenerative diseases.

16.
Biochem Soc Trans ; 50(5): 1481-1488, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36305644

RESUMO

Recent data from our laboratory has shown that the nucleotide excision repair (NER) proteins UV-damaged DNA-binding protein (UV-DDB), xeroderma pigmentosum group C (XPC), and xeroderma pigmentosum group A (XPA) play important roles in the processing of 8-oxoG. This review first discusses biochemical studies demonstrating how UV-DDB stimulates human 8-oxoG glycosylase (OGG1), MUTYH, and apurinic/apyrimidinic (AP) endonuclease (APE1) to increase their turnover at damage sites. We further discuss our single-molecule studies showing that UV-DDB associates with these proteins at abasic moieties on DNA damage arrays. Data from cell experiments are then described showing that UV-DDB interacts with OGG1 at sites of 8-oxoG. Finally, since many glycosylases are inhibited from working on damage in the context of chromatin, we present a working model of how UV-DDB may be the first responder to alter the structure of damage containing-nucleosomes to allow access by base excision repair (BER) enzymes.


Assuntos
Xeroderma Pigmentoso , Humanos , Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Guanina/metabolismo , Xeroderma Pigmentoso/metabolismo , Proteínas de Ligação a DNA/metabolismo
17.
Nat Struct Mol Biol ; 29(7): 639-652, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35773409

RESUMO

Oxidative stress is a primary cause of cellular senescence and contributes to the etiology of numerous human diseases. Oxidative damage to telomeric DNA has been proposed to cause premature senescence by accelerating telomere shortening. Here, we tested this model directly using a precision chemoptogenetic tool to produce the common lesion 8-oxo-guanine (8oxoG) exclusively at telomeres in human fibroblasts and epithelial cells. A single induction of telomeric 8oxoG is sufficient to trigger multiple hallmarks of p53-dependent senescence. Telomeric 8oxoG activates ATM and ATR signaling, and enriches for markers of telomere dysfunction in replicating, but not quiescent cells. Acute 8oxoG production fails to shorten telomeres, but rather generates fragile sites and mitotic DNA synthesis at telomeres, indicative of impaired replication. Based on our results, we propose that oxidative stress promotes rapid senescence by producing oxidative base lesions that drive replication-dependent telomere fragility and dysfunction in the absence of shortening and shelterin loss.


Assuntos
Guanina , Encurtamento do Telômero , Senescência Celular/genética , DNA/metabolismo , Dano ao DNA , Humanos , Estresse Oxidativo , Telômero/metabolismo
18.
DNA Repair (Amst) ; 113: 103304, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35248839
19.
Nat Commun ; 13(1): 974, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190564

RESUMO

UV-DDB, consisting of subunits DDB1 and DDB2, recognizes UV-induced photoproducts during global genome nucleotide excision repair (GG-NER). We recently demonstrated a noncanonical role of UV-DDB in stimulating base excision repair (BER) which raised several questions about the timing of UV-DDB arrival at 8-oxoguanine (8-oxoG), and the dependency of UV-DDB on the recruitment of downstream BER and NER proteins. Using two different approaches to introduce 8-oxoG in cells, we show that DDB2 is recruited to 8-oxoG immediately after damage and colocalizes with 8-oxoG glycosylase (OGG1) at sites of repair. 8-oxoG removal and OGG1 recruitment is significantly reduced in the absence of DDB2. NER proteins, XPA and XPC, also accumulate at 8-oxoG. While XPC recruitment is dependent on DDB2, XPA recruitment is DDB2-independent and transcription-coupled. Finally, DDB2 accumulation at 8-oxoG induces local chromatin unfolding. We propose that DDB2-mediated chromatin decompaction facilitates the recruitment of downstream BER proteins to 8-oxoG lesions.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Guanina/análogos & derivados , Linhagem Celular Tumoral , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Dano ao DNA/efeitos da radiação , DNA Glicosilases/metabolismo , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Guanina/metabolismo , Guanina/efeitos da radiação , Células HEK293 , Humanos , Raios Ultravioleta/efeitos adversos , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
20.
Front Mol Biosci ; 8: 772877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805281

RESUMO

DNA is under constant threat of damage from a variety of chemical and physical insults, such as ultraviolet rays produced by sunlight and reactive oxygen species produced during respiration or inflammation. Because damaged DNA, if not repaired, can lead to mutations or cell death, multiple DNA repair pathways have evolved to maintain genome stability. Two repair pathways, nucleotide excision repair (NER) and base excision repair (BER), must sift through large segments of nondamaged nucleotides to detect and remove rare base modifications. Many BER and NER proteins share a common base-flipping mechanism for the detection of modified bases. However, the exact mechanisms by which these repair proteins detect their damaged substrates in the context of cellular chromatin remains unclear. The latest generation of single-molecule techniques, including the DNA tightrope assay, atomic force microscopy, and real-time imaging in cells, now allows for nearly direct visualization of the damage search and detection processes. This review describes several mechanistic commonalities for damage detection that were discovered with these techniques, including a combination of 3-dimensional and linear diffusion for surveying damaged sites within long stretches of DNA. We also discuss important findings that DNA repair proteins within and between pathways cooperate to detect damage. Finally, future technical developments and single-molecule studies are described which will contribute to the growing mechanistic understanding of DNA damage detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...